Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.03.22268684

ABSTRACT

Importance The impact of the SARS-CoV-2 pandemic on children remains unclear. Better understanding of the burden of COVID-19 among children and their protection against re-infection is crucial as they will be among the last groups vaccinated. Objective To characterize the burden of COVID-19 and assess how protection from symptomatic re-infection among children may vary by age. Design A prospective, community-based pediatric cohort study conducted from March 1, 2020 through October 15, 2021. Setting The Nicaraguan Pediatric Influenza Cohort is a community-based cohort in District 2 of Managua, Nicaragua. Participants A total of 1964 children aged 0-14 years participated in the cohort. Non-immunocompromised children were enrolled by random selection from a previous pediatric influenza cohort. Additional newborn infants aged [≤] 4 weeks were randomly selected and enrolled monthly, via home visits. Exposures Prior COVID-19 infection as confirmed by positive anti SARS-CoV-2 antibodies (receptor binding domain [RBD] and spike protein) or real time RT-PCR confirmed COVID-19 infection [≥] 60 days prior to current COVID-19. Main Outcomes and Measures Symptomatic COVID-19 cases confirmed by real time RT-PCR and hospitalization within 28 days of symptom onset of confirmed COVID-19 case. Results Overall, 49.8% of children tested were seropositive over the course of the study. There were also 207 PCR-confirmed COVID-19 cases, 12 (6.4%) of which were severe enough to require hospitalization. Incidence of COVID-19 was highest among children aged <2 years -- 16.1 per 100 person-years (95% Confidence Interval [CI]: 12.5, 20.5) -- approximately three times that of children in any other age group assessed. Additionally, 41 (19.8%) symptomatic SARS-CoV-2 episodes were re-infections, with younger children slightly more protected against symptomatic reinfection. Among children aged 6-59 months, protection was 61% (Rate Ratio [RR]:0.39, 95% CI:0.2,0.8), while protection among children aged 5-9 and 10-14 years was 64% (RR:0.36,0.2,0.7), and 49% (RR:0.51,0.3-0.9), respectively.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.23.21261038

ABSTRACT

ABSTRACT Accurate tracing of epidemic spread over space enables effective control measures. We examined three metrics of infection and disease in a pediatric cohort (N ≈ 3,000) over two chikungunya and one Zika epidemic, and in a household cohort (N=1,793) over one COVID-19 epidemic in Managua, Nicaragua. We compared spatial incidence rates (cases/total population), infection risks (infections/total population), and disease risks (cases/infected population). We used generalized additive and mixed-effects models, Kulldorf’s spatial scan statistic, and intracluster correlation coefficients. Across different analyses and all epidemics, incidence rates considerably underestimated infection and disease risks, producing large and spatially non-uniform biases distinct from biases due to incomplete case ascertainment. Infection and disease risks exhibited distinct spatial patterns, and incidence clusters inconsistently identified areas of either risk. While incidence rates are commonly used to infer infection and disease risk in a population, we find that this can induce substantial biases and adversely impact policies to control epidemics. Article summary line Inferring measures of spatial risk from case-only data can substantially bias estimates, thereby weakening and potentially misdirecting measures needed to control an epidemic.


Subject(s)
COVID-19 , Encephalitis, Arbovirus , Infections
SELECTION OF CITATIONS
SEARCH DETAIL